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ABSTRACT
Nickel-catalyzed multiple-component reactions are a promising
new type of domino reaction. For instance, a variety of starting
materials such as alkenes, alkynes, and unsaturated carbonyl
compounds can be connected with high selectivity under reason-
ably mild conditions. These reactions provide a new route to
synthetically important key compounds including dienes, enynes,
enol silyl ethers, and carbocycles. Furthermore, an asymmetric
version of the reaction is successful. Thus, intermolecular domino
reactions should be important reactions for years to come.

Introduction
Domino reactions are organic reactions where multiple
carbon-carbon bond formation is achieved in a single
operation without any troublesome experimental proce-
dures. The procedures are advantageous environmentally
and economically and should have wide practical appli-
cation.1-3 In particular, intramolecular domino reactions
are powerful methods for constructing complex organic
molecules. On the other hand, intermolecular domino
reactions with high selectivity are a challenging issue in
synthetic organic reactions. A range of strategies involving
the sequential generation of radical and anionic species
are useful for such intermolecular transformations.4,5 We
have envisaged a new approach based on a transition-
metal-catalyzed reaction.6 This Account outlines nickel-

catalyzed intermolecular domino reactions developed by
our research group.

Regio- and Stereoselective Intermolecular
Domino Reaction
The use of a transition-metal-catalyzed reaction as part
of a domino process has gained increasing interest. In
particular, processes including the Mizoroki-Heck reac-
tion, i.e., palladium-catalyzed arylation and alkenylation
of unsaturated carbon molecules, are well-known ex-
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amples (Scheme 1).3,6 These transformations proceed via
the activation of a carbon unit (A) by a metal catalyst (M),
e.g., oxidative addition to a Pd(0) complex, to generate
an A-M species. The A-M species then adds to a carbon-
carbon double or triple bond to lead to intermediate I or
I′, which is transformed into II or II′ upon capturing
another unit (B), e.g., coupling with carbon nucleophiles.
In contrast to the domino process involving an intramo-
lecular reaction, it would be difficult to develop a regio-
and stereoselective intermolecular domino reaction of an
unactivated alkene or alkyne with two independent carbon
chains A and B.7-9

As an approach to intermolecular multiple-component
domino coupling, we noted that a nickel(0) complex
catalyzed the carbonylative coupling of allyl chloride 1
with an unactivated alkyne, carbon monoxide, and an
alcohol (Scheme 2).10 The key step is the preparation of
alkenylnickel species 3 via the insertion of an alkyne into
(π-allyl)nickel intermediate 2.11 If 3 sequentially reacted
with organometallics as carbon nucleophiles, a three-
component coupling product would be obtained. Actually,
the nickel(0)-catalyzed reaction of 1 with terminal alkynes
4 and alkynyltins 5 gave 6 with high regio- and stereo-
selectivities (Chart 1).12,13 Dimethylzinc (Me2Zn) and tri-
methylaluminum (Me3Al) also reacted with 1 and 4 to give
7 (Chart 2).14

When an organophosphorus compound such as tri-
phenylphosphine (PPh3) was added to the reaction system
(1-2 equiv vs Ni(0) catalyst), cross-coupling of 1 and
organometallics, rather than three-component coupling,
took place preferentially.15 This result indicates that the
coordination of PPh3 to 2 inhibits the production of 3′
(Scheme 3).

Further investigations using enones 8 resulted in the
development of a novel domino reaction. Alkynes 4
reacted with 5, 8, and chlorotrimethylsilane (Me3SiCl) in
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the presence of a nickel(0) complex to provide the four-
component coupling products 9 (Chart 3).16 The use of
pyridine as an additive to the reaction medium was
essential for the reaction with cyclic or â-substituted
enones such as 8c-e (Chart 4).17 These reactions occurred
with excellent regio- and stereoselectivities. On the basis
of spectral analyses of the corresponding hydrolyzed
products 10, 8 was selectively introduced to the terminal
carbon atom of a carbon-carbon triple bond in 4, and
an alkynyl unit of 5 reagent was added to the internal
carbon atom. Both carbon units were added to 4 in a syn
manner. Stereoselective construction of 10f would result
from the approach of the nickel catalyst from the exo-
face of the cyclopentene unit in 8f (eq 1).17 While the
domino coupling with 1-hexynyltin failed, bis(1-hexynyl)-
zinc reacted with 8d and 4h to selectively give 10g (eq

2).18 A similar reaction using Me2Zn occurred in the
presence of a Ni(0)/PPh3 complex to give 11 (hydrolyzed
products 12) (Chart 5).19

The regio- and stereoselective domino reaction using
enones 8 might proceed via (i) generation of a (π-
siloxyallyl)nickel species 13, which is derived from the
reaction of 8 coordinated to the nickel(0) species with
Me3SiCl,20 (ii) insertion of 4 into 13 to yield alkenylnickel
intermediate 14, and (iii) reaction with alkynyltins 5 or
organozincs to give 9 or 11 (path A in Scheme 4). However,
the stoichiometric reaction depicted in eq 3 did not give
the corresponding 9a. This result suggests that the reac-

tion does not take place via path A. Therefore, an
alternative route via 15 is proposed (path B). Although the
addition of 5 or Me2Zn to 4 was not observed under these
reaction conditions,21,22 the possibility of another pathway
(path C) via the conjugate addition of the alkenyltin or
alkenylzinc species to 8 could not be excluded.23,24

As an intramolecular version of the domino coupling
mentioned above, Montgomery et al. have reported the
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nickel(0)-catalyzed cyclization of alkynyl enones with
organozincs (eq 4).25

Diastereodifferentiating Domino Reaction with
Norbornenes
Cs-symmetric molecules contain at least two prochiral
centers, which can be converted to chiral carbons by
appropriate enantiotopic functionalization.26 Torii and co-
workers reported that a Pd(0) complex catalyzed an
asymmetric desymmetrization of norbornene (eq 5).27 Use

of a chiral-center-containing alkenyl iodide resulted in the
differentiation of prochiral positions of the norbornene
to create two chiral centers at C2 and C3. The combination
of norbornene and a cyclic enone such as 8d, which
contains a prochiral face, should create a new domino
process which is diastereodifferentiating. When 8d was
reacted with norbornene, an alkynyltin 5b, and Me3SiCl
in the presence of nickel(0) species and a ligand 16,28 18a
was obtained as a sole product after hydrolysis (Scheme
5).29

The diastereodifferentiation can be explained by the
pathway outlined in Scheme 6. Initially, a mixture of both
intermediates 19a and 19b is formed under kinetic
control. The subsequent thermodynamic equilibrium

Scheme 4 Scheme 5
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between 19a and 19b would control the coupling of one
enantiotopic face of 8d with the one enantiotopic position
in norbornene. The reaction using 5b occurred in THF
under refluxing conditions. At that point, the equilibrium
lies so far toward thermodynamically favored 19a that it
leads to the formation of 17a.30

Enantioselective Intermolecular Domino
Reaction
The introduction of a catalytic reaction with asymmetric
induction to a domino process is also an important theme
in recent synthetic studies. Overman et al. reported the
sequential cyclization of a polyene by an asymmetric Heck
reaction (Scheme 7).31,32 Enantioselection occurs in the
first addition of the alkenylpalladium species to the alkenyl
unit. The total asymmetric synthesis of (+)-xestoquinone
by Keay et al. has demonstrated the utility of this reac-
tion.33 Shibasaki et al. have provided an example of the
process involving Suzuki coupling, i.e., palladium-
catalyzed cross-coupling of organic electrophiles with
organoboranes,34 and the asymmetric Heck reaction
(Scheme 8).35 They also demonstrated the utility of an
asymmetric Heck reaction-nucleophile (acetate, amine,
and carbanion) capture process using an alkenyl triflate
(Scheme 9).36,37

We have found a nickel-catalyzed asymmetric multiple-
component coupling using Me2Zn (see Chart 5).38 Inter-

estingly, catalytic systems involving simple monodentate
chiral oxazolines such as 20 (Chart 6),39 which have been
previously used as valuable chiral auxiliaries,40 were very
effective in giving optically active 12. The results are
summarized in eqs 6 and 7. In the reaction with an

internal alkyne such as 3-hexyne (eq 7), when a solution
of 8g and Me3SiCl was slowly added to the reaction
mixture including the catalyst, the corresponding 12e was
obtained in 81% ee (enantiomeric excess). In contrast,
some optically active organophosphorus ligands such as
BINAP41 and MOP,42 and bidentate oxazolines such as 21-
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23,40,43,44 which have been extensively used as ligands for
transition metals in asymmetric catalysis, did not give
enantioselection.

Regioselective Three-Component
Cyclotrimerization
Transition-metal-catalyzed cyclotrimerization (or [2 + 2
+ 2] cycloaddition) leads to six-membered cyclic com-
pounds with the formation of three new carbon-carbon
bonds. Since the first example was reported by Reppe,45

these reactions have been extensively studied by various
research groups.46,47 Whereas the intramolecular and
partially intermolecular modes of the reaction have been
used as efficient synthetic methods,48 there is no known
example of the completely intermolecular mode. The
catalytic reaction usually leads to a complex mixture of
cycloadducts, which severely limits its utility (Scheme
10).49

During our survey for domino coupling with alkynes 4
and enones 8, we found that a binary metal system of
nickel(0) and aluminum catalyzed a regioselective cyclo-
trimerization of one molecule of 8 and two molecules of
4 (Chart 7).50,51 In this reaction, the MenAl(OPh)3-n (n )
0-2) cocatalyst, which was generated from the reaction
with Me3Al and phenol in situ,52 functions as a Lewis acid
and activates enone 8. The regiochemistries of theresulting
cycloadducts 24 were determined by spectral analyses of

the corresponding aromatic compounds 25 and 26 pro-
duced upon subsequent treatment with 1,8-diazabicyclo-
[5.4.0]undec-7-ene (DBU) in air. Interestingly, the regi-
oselectivities in the formation of the products are
dependent on the alkyne 4 used in the cycloaddition.
Thus, the reaction with 4a or 4e tends to selectively give
isomer 25, while another isomer 26 is derived from the
reaction with (trimethylsilyl)acetylene (4g) or tert-butyl-
acetylene (4i).

Finally, we have developed the first catalytic cyclo-
trimerization of three different unsaturated molecules.53

A three-component cycloadduct 27a, in which the Me3Si
group is adjacent to the carbonyl group, was pre-
dominantly obtained when 4e was added dropwise to a
mixture of 8d and 4g in the presence of the nickel and
aluminum catalytic system (eq 8). In this procedure, the
production of undesired cycloadducts 25a, 26c, and 28
was suppressed. A biaryl product 27b was synthesized
from the reaction with an aryl-substituted internal alkyne
(eq 9).

As a related example of a nickel-catalyzed and Lewis
acid-assisted reaction, it has been shown that the cyclo-
addition of diynes and enones 8 proceeded in the pres-
ence of a combination of nickel and zinc.54 In this re-
action, trimethylsilyl-substituted diynes reacted with
an equimolar amount of 8b to give completely regio-
chemical-controlled cycloadducts 29, in which the tri-
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methylsilyl group is adjacent to the carbonyl group (eqs
10 and 11).55

Conclusion
Intramolecular domino transformations are useful for
synthesizing complex compounds. On the other hand, the
development of synthetically useful intermolecular mul-
tiple-component domino reactions is in its infancy. The
nickel-catalyzed reactions summarized in this Account are
among the practical intermolecular multiple-component
reactions that have been developed to date and should
find wide application in synthesis.56
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